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Temperature-sensitive constant-current wires operating at very low resistance ratios 
have been tested for temperature fluctuation response. A significant step in the 
response was found to occur with a centre-frequency of typically Q Hz. The step size 
was observed to be as large as 30°i0 and grew from zero to its maximum value in 
about a decade. Analysis shows that this phenomenon is associated with axial con- 
duction of heat to and from the prongs. If it is recognized that prongs have finite 
thermal inertia then a modification of the boundary conditions to the equations of 
Betchov (1948) predicts this step, in agreement with the simple asymptotic a'ialysis 
of Maye (1 970). 

Experiments indicate that a similar phenomenon occurs with velocity-sensitive 
wires. Axial conduction appears to be the most likely cause. Aeroelastic deflexions 
and non-uniform cooling caused by bowing of the wire make precise predictions 
impossible. Here the differences in step size between wires were observed to be a8 
large as 10°/o (or Z O O / ,  in mean-square energy), the centre-frequency was usually 
beyond 10 Hz for the wires tested and the step extended over a much broader frequency 
range than in the temperature-sensitive case. The effect occurred at all velocities, 
resistance ratios and wire geometries. An analysis based on non-uniform cooling of 
the wire filament predicts the correct frequency range and shows that steps of 10 "4 
in frequency response are quite plausible. 

1. Introduction 
The small diameter filament of a hot-wire probe generally has its ends coated with a 

cylindrical metallic layer, forming 'stubs' which are in turn connected to the probe 
prongs. When Wollaston wire is used, the filament is made from platinum and the 
stub is made from silver. 

In  the past, it has been assumed in analyses that the wire-stub junction is at  the 
ambient temperature. But, Champagne, Sleicher & Wehrmann (1967) found experi- 
mentally that at  high resistance ratios the temperature at  the ends of the wire was 
considerably above ambient. Thus the heat-transfer properties of the support were 
demonstrably influencing the wire heat transfer, and the dynamic response of the 
probe should include not only a wire thermal-inertia time constant but also time 
constants associated with the stub and prongs. 

A hot wire is generally used in two distinct modes. To measure velocity fluctuations 
the wire is kept a t  a constant temperature and operated with a high resistance ratio, 
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while to measure temperature fluctuations the wire is run with a constant current a t  a 
very low resistance ratio. 

In the case of temperature-fluctuation measurements it is found that the com- 
paratively massive prongs have a dominant influence on the time constant of the end 
conduction phenomenon and the problem can be conveniently divided into a fast 
response system (the wire) and a slow response system (the prongs). The analysis then 
predicts a step in the system's frequency response at low frequencies, which gives a 
discrepancy between the static and dynamic Rensitivities, as first suspected by Maye 
(1970) from a simple asymptotic analysis. 

In the analysis presented here, the full transfer function is derived and shows over 
what frequency range the phenomenon occurs. A detailed comparison with experiment 
is presented for a family of wires. The theory and experiments show that the step 
can vary from 30 % for a length-to-diameter ratio l / d  of 100 to less than 2 % for 
l / d  = 1000 and that the centre-frequency of the step is about QHz for the probes 
used, Unless appropriate precautiona are taken this can lead to large errors in the 
sensitivity calibration. 

In  the case of velocity-fluctuation measurements the problems are far more com- 
plex. Analysis shows that asymmetrical temperature distributions caused by wire 
bowing and aeroelastic deflexions result in an effective lowering of tho wire time 
constant. A t  low frequencies the thermal inertia of the stub is important but not 
that of the prong. Furthermore, the lowering of the wire time constant means that the 
thermal inertia of both the stub and wire control the phenomenon and a convenient 
separation into two systems cannot be made. 

Because of the complexity of the problem and the large array of variables beyond 
any control, a precise prediction by analysis and comparison with experiment is 
impossible. However, some aspects of the problem can be calculated and show that 
appreciable discrepancies between static and dynamic response are possible. This 
conforms with experiment. 

2. Constant-current method for the measurement of temperature 
fluctuations 

2.1. Analysis 
Figure 1 defines some of the symbols and shows a wire and wire element. A heat 
balance on the element leads to the general time- and space-dependent relation 

Here 6 is the local temperature along the wire measured relative to the instantaneous 
gas temperature 8,, which is uniform in space but varies with time and is measured 
relative to some fixed datum. The co-ordinate x has been non-dimensionalized by the 
wire length 1. The quantities 5 and q denote hndPlkA and PR,al/kA respectively, 
where I is the wire current, Rg is the wire resistance at the instantaneous gas tem- 
perature, h is the wire film coefficient, a is the temperature coefficient of resistivity 
of the wire material and k is its thermal conductivity. The constant 7 denotes pcE2/k, 
where p is the wire density and c is its specific heat. The velocity of flow over the wire 
is assumed to be constant and hence 6 is constant. 
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FIGURE 1. Hot-wire geometry and definition of quantities. 

Boundary conditions must be applied to ( 1 ) )  and these must come from a con- 
sideration of the prongs. As the temperature of the gas varies, the entire prong and 
stub system must be heated and cooled and the heat flow must occur via the boundary 
layers surrounding the prong and stub. For simplicity the prong will be ‘lumped’, i.e. 
regarded as being made up of discrete components as indicated by the electrical 
analogue circuit shown in figure 2. 

For the purpose of this exercise, imagine that the prong is connected to an infinite 
heat sink where it adjoins the probe holder and that the temperature of this sink is 
at  the mean gas temperature. 
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FIGURE 2. Simple analogue for prong heat balance. 

Let 0; be the perturbation in gas temperature and let 8; be the perturbation in 
prong temperature, both measured relative to a fixed datum. The prong will be 
heated up by heat flow through the boundary layer on its surface, which has a thermal 
resistance R,. Some of this heat will accumulate in the thermal capacitor C and some 
will be conducted down the prong to the infinite sink through the resistance R,. 
Because of the massiveness of the prong, the amount of heat flowing to the wire 
filament will have a negligible effect on the thermal balance of the prong. Hence 
8; becomes a forcing funct,ion for the wire filament and is determined by the prong 
and external flow conditions. 

The transfer function for the prong in Laplace-transform form is 

8;/0; = G / (  1 + Tp s), (2) 

where G = R,/(R, + R,) and Tp = GR, C .  One would expect G to be of order one since 
under sufficiently slowly varying conditions 8; x 0;. The quantity s is the Laplace 
variable and for steady-state response to sinusoidal perturbation s = iw ,  where 
i = 2, - 1.  Overbars denote a temporal mean. 

A time-dependent solution of ( 1 )  shows that the characteristic time constant T, 
for the wire is 7/H, where FI = t - q  (Betchov 1948), and this is typically 0.001s. 
This is the usual 'bulk heating ' time constant associated with filaments. Hence a t  low 
frequencies one can regard the filament as responding instantly to fluctuations in gas 
temperature and the time-derivative term can be dropped. 

Assume symmetry conditions and let 

A solution for 0, can then be obtained from (1). Noting that 0, = 8p - 8,, this solution 
can be combined with (2) to give a relationship between (8) and O8. From the definition 
of a,  (0) = (Rw- R,)/aR,, where R, is the wire resistance. A linearized perturbation 
equation can then be derived which gives the transfer function between r, and ro, 
the perturbation resistances. Let the resistance ratio R ( = zw/Rg)  approach unity. 
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FIGURE 3. Response of wires to gas-temperature fluctuations. 
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The quantity ij then approaches zero and after a considerable amount of algebra and 
binomial expansions one obtains 

where E is a small quantity given by 

8 = -26/@. (4) 

Overbars denote temporal means, e,  is the voltage perturbation across the wire and 
the suffix N denotes that the transfer function has been normalized to be unity at  
zero frequency. With s = iw, the modulus of (e,/&'i)N has a step in frequency response 
with a centre-frequency w, = l /Tp .  

Maye (1970) arrived at  (4) (with G = 1 )  by assuming that at  high frequencies the 
prongs were at  the temporal mean gas temperature. He was not concerned with the 
frequency dependence as given by (3).  

2.2. Temperature-fluctuation experiments 

Accurately known sinusoidal perturbations in temperature are difficult to produce. 
However, square waves were produced by slowly oscillating the wire across two 
adjacent streams of the same velocity with one stream at an elevated temperature 
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relative to the other. The two streams were separated by a splitter plate and the wire 
was located downstream of its trailing edge. A constant-current anemometer operating 
with platinum Wollaston wire soldered onto a DISA 55Fl4 prong was used with a 
resistance ratio of typically 1.01. The velocity sensitivity of the wire was negligible. 

Figure 3 shows a Bode diagram for a number of different wires with gas temperature 
perturbations and operating under a number of different flow conditions. These 
results have been compared with the theoretical predictions of (3)  and (4). 

The value of G was estimated by applying a simple empirical heat-transfer formula 
to the prong to calculate R,, and R, can be calculated using the Fourier heat-conduc- 
tion formula. The stub was ignored. This gave G 0.7. T, can be estimated similarly 
alrd this gave Tp x 1.4 s. Experiments indicate Tp M 1 s. It can be shown that 

k * d  
E = - GNU-* (%) (t) ,  

where Nu is the Nusselt number of the wire and k, is the thermal conductivity of air. 
From Hinze (1959), for air a t  normal temperature and pressure Nu N 0.39 + 0+51Re*, 
where Re is the Reynolds number of the wire. For the purpose of prediction a safe 
and conservative value of G is unity. 

Figure 3 indicates that substantial errors can occur if wires are calibrated statically 
and then used in a dynamic situation. These errors are reduced as the length-to- 
diameter ratio increases. The data agree reasonably well with (3), and also the pre- 
dictions of Waye (1970) for E have gow been confirmed experimentally. 

3. Constant-temperature hot wire for velocity-fluctuation measurements 
3.1. Experiments with velocity Jluctuations 

Many preliminary experiments carried out by the authors indicate that a similar step 
in frequency response occurs ip the case of velocity-fluctuation measurements but 
that the characteristic frequency is higher and the frequency range much broader than 
in the temperature-fluctuation case. Measurements of absolute values of the step size 
E are most difficult. Perry & Worrison (1971 a)  managed to obtain frequency response 
curves for constant-temperature wires using a low frequency shaker in the range 
1-15 Hz and a KQrmBn vortex-shedding technique for the range 500 Hz-10 kHz. The 
response was found to be flat in these ranges. Measurements by these methods become 
impractical in the important range 15 Hz--1 kHz. Also the vortex-shedding method 
cannot produce a response curve for a fixed mean velocity. An attempt was made by 
Perry & Morrison (1972) to bridge this frequency gap by using a vibrating table. 
The wire was oscillated sinusoidally in a uniform steady stream and the hot-wire 
output was compared with the integrated output from an accelerometer mounted on 
the table. Both signals were passed in turn through the same notch filter to  remove 
spurious harmonics. It can be seen from figure 4 that  a step in the response does occur 
but the hot-wire filament undergoes a mechanical resonance. I ts  motion then no 
longer conforms with that of the table. Thus i t  could be argued that the inertia forces 
which are present cause the filament to  undergo unnatural motions even before 
resonance. Thus the experiment does not faithfully simulate a stationary wire in a 
fluctuating stream. 
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FIGURE 4. Hot-wire response to forced oscillation in steady flow. Mechanical resonance unusually 
low in this case. Normalized at o = 30 Ilz. (After Perry & Morrison 1972.) 

Another method for determining e would be to put the wire in a ‘known’ flow with 
a large spread of frequency components in the velocity fluctuations. To know the 
flow, one must measure it with another instrument a t  the same time. A laser-Doppler 
system would be ideal but the necessary seeding would affect the hot-wire performance. 

Thus a t  present the authors see no definitive way of measuring absolute values of e. 
The best that can be done is to use another hot wire and make comparison tests. Thus 
arbitrary wire pairs were chosen and the differences in their B’S were measured. Let 
this difference be Ae for a given wire pair. 

A variety of double probes were so constructed that the pair of wire filaments were 
parallel and no more than about one wire filament length apart. These were mounted 
with their filaments horizontal downstream of a turbulence-producing grid set across 
the entrance of the working section of the tunnel. The grid consisted of horizontal 
strips. To ensure that sufficient turbulent energy was present a t  low frequency, a 
vertical oscillating flap was placed in the flow upstream and to one side of the hot-wire 
probes. This increased the rate of convergence of the data sampling a6 the low- 
frequency settings. Turbulence intensities were typically 5 Ol0 and the mean velocity 
lOm/s. The wire properties are given in the figures. 

Bode diagrams for Ae were determined by processing the signals from the two 
hot-wire channels simultaneously using two sets of notch filters (one octave wide) and 
two sets of squaring circuits and analog integrators. An EAI TR48 analog computer 
was used. The integration times were 90 s and were repeated until the variance of the 
accumulated mean squares was less than The two processing channels were 
calibrated for any mismatch in frequency response a t  all frequency settings to an 
accuracy of 0-1 Oi0. This was done by passing the same hot-wire signal into both 
channels simultaneously. All results were corrected for noise and any d.c. offsets. The 
hot-wire sets had frequency responses well beyond 20 kHz. 

Let the two hot-wire channels be A and B and the r.m.s. voltages be eA and eB.  A 
normalized Bode curve could be written as 
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where f ( w )  has the properties f(0) = 0 and f(m) = 1.  Figures 5(a)-(d) show four 
typical Bode diagrams for A€ f ( w )  where (e , /eB)N has been normalized to unity at  low 
frequency. 

To ensure that the phenomenon was not due to any spurious electronic effects, probe 
A was unplugged and connected to anemometer B and its associated computing 
channel and vice versa for probe B. Hence in this second test 

FIGURE 8. Experimental Bode plots. Each figure is for a given wire pair. Wires in a given pair were 
interchmged, giving two plots. 0, A€ positive; 0 ,  Ae negative. Platinum Wollaston wire 5pm 
diameter, R = 1.6, = 10m/s used throughout. (a), (b)  DISA type 55Fl4 geometry, i.e. 3mm 
between prongs, and l / d  = 200. ( c ) ,  (d )  6 mm between prongs, l / d  = 400. No reflexion test carried 
out for case ( d ) .  
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That is, Ae should effectively change sign and the Bode diagram should be reflected.? 
This reflexion is seen to occur with high accuracy. Thus the phenomenon has been 
isolated to the hot-wire filament, probe and cable. By using the same probes and 
cables with different hot wires, it was found that the effect was characteristic of the 
filaments. 

To ensure that no anomaly in the flow position was causing the effect, the two 
wires were slowly traversed across the flow vertically and sinusoidally through a 
distance of3 in. a t  about 3 Hz while the data were being taken. 

It can be seen that the values of Ae are significant and that a variety of Aeffw) 
distributions are possible. Other tests which compared broad-band turbulence with 
low frequency sinusoids using the dynamic calibrator developed by Perry & Morrison 
(1971a) yielded on occasions discrepancies of approximately 10 yo. These tests would 
considerably underestimate Ae. .Again reflexion tests were carried out. With the aid 
of these experiments and many others like it, the authors conclude that there is no 
simple or obvious property of the wires which can be related to Ae. Further detailed 
observations in the next subsection explain how complex this problem is. 

3.2.  Modelling the problem 

Consider a constant-temperature flow with fluctuating velocity. The only source of 
heat supplied to the prong is from the wire. Assuming the prong to be massive, the 
stub will be the only element of the support system at an elevated temperature and 
will be heated at  one end. Thus a distributed rather than a lumped system must be 
used, with heat waves travelling down the stub from the wire. 

Some important experimental observations must be discussed before sensible 
modelling can begin. When measuring velocity fluctuations wires are usually run hot 
at a resistance ratio R of 1.5-2. As reported by Perry & Morrison (1971 b, 1972) and 
Perry (1972), wires bow under the action of thermal expansion and become buckled 
columns, even when they are initially straight. They have a very low elastic resistance 
to lateral aerodynamic loads, and the bow rotates about an axis through the stubs as 
the air velocity is increased. This bow is responsible for the mechanical resonance 
noted earlier in figure 4. 

The phenomenon is highly nonlinear and in some cases the wire will ‘flip over’ 
once a critical velocity is reached. In other cases the bow orientation varies gradually 
with velocity. Bows appear to have a marked effect on the temperature distribution 
along the wire. By running wires at  a resistance ratio of about 2.5 in a flow and viewing 
them under a microscope the point of maximum temperature shows up as a hot spot; 
see figure 6 (plate 1 ) .  For a slightly asymmetrical bow, the hot spot moves towards 
the stub as the bow rotates, and sometimes the hot spot will settle near a kink. 

There could be many causes for this. Wire-property variations associated with 
stress variations, surface contamination or axial flow components along the wire 
induced by the wire bow are some possible explanations for perturbations in the 
symmetry of the temperature distribution. 

Even the spatial mean effective film coefficient can be affected by the orientation of 
the bow. This was demonstrated by placing a wire in a fixed uniform flow and rotating 

f This ‘reflexion’ test is crucial. It is a stringent test of all aspects of the experiment and 
equipment (and hot-wire operator). 
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the bow by means of an externally applied magnetic field. Thus as the velocity of flow 
fluctuates, the orientation of the bow fluctuates, causing the distribution of the effective 
film coefficient to  fluctuate. The bow will faithfully and consistently follow the 
velocity fluctuations up to the mechanical response frequency, typically 1-2 kHz 
(Perry & Morrison 1972). 

There are many directions one could take in formulating an analysis. The authors 
offer a first attempt a t  the problem in $4. There the phenomenon is modelled by a 
perturbation in the symmetry of the film coefficient. Future studies should investigate 
other possibilities when the physics are better understood. An important feature of 
this preliminary analysis is that, since the temperature distribution is asymmetrical, 
the assumption that the wire time constant T, is ?/IT will not be valid and in fact 
i t  is found that the thermal effects within the wire itself can extend their influence 
down to the low characteristic frequency of the stubs. 

The analysis indicates the frequency range over which the end-conduction effects 
occur, and this agrees with the experimental results for A€. The complexity of the 
problem is obvious and, beyond demonstrating that large 6’s are possible, detailed 
comparison between experiment and theory cannot be made. This would require 
knowledge of a number of aeroelastic derivatives which are peculiar to  any given wire. 

4. Analysis of velocity-sensitive constant-temperature wire response 

Equation (1)  will be non-dimensionalized by (8) to give 

4.1. Basic equations 

This equation is valid for a steady gas temperature and constant (8). 2 = R- 1 .  It 
will be noted that 6, the film coefficient parameter, is a function of z. 

Taking a time average for small perturbations about a mean gives a static equation 

with the following boundary and normalizing conditions: 

( l0a -c )  

Here KO = H l / k A ,  which is a non-dimensional overall heat-transfer coefficient of the 
stub. H is the heat flow per unit time to the stub from the wire per unit temperature 
6, a t  the wire-stub junction. 

By considering small perturbations about a temporal mean and linearizing for time 
variat4ions, (8) gives 

wit,h the boundary conditions 
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Here primes denote perturbations and overbars a temporal mean. Equation (12c )  is 
a result of the feedback circuit which maintains a constant spatial-average tempera- 
ture. K(s)  is a frequency-dependent overall heat-transfer coefficient of the stub. 

One end of the stub is connected to a massive prong which will be assumed to be at  
the steady gas temperature. The other end of the stub is a t  a temperature 0, = 0+* or 
6-t. Treating the stub as a cylinder and neglecting cross-flow cooling and heat gener- 
ation (both of which can be shown to be small) leads to a greatly simplified version 
of (8) which can then be applied to the stub. This leads to a solution for K(s)  given by 

K(s )  = K0(7s s)* coth (7, s)*,  (13) 

where 7 .9  = P,CS~%/lc,. (14) 

This is the characteristic time constant of the stub and is usually of the order of 0-03 s. 
The suffix s denotes stub properties. 

Consider the distribution of E(x). Because (9) and (11) are nonlinear in x, the dis- 
tribution was so chosen that the equations were piecewise linear. Figure 7 illustrates 
this. Equations (9) and ( 1 1 )  must now be solved in the two regions 1 and 2 shown in 
the figure. Additional boundary conditions must be added to ensure matching of 
temperatures and temperature gradients a t  the junction defined by x = A. 

4.2. Aeroelastic effects and the step E in the frequency response 

To calculate the step in the frequency response it is necessary to evaluate dq/dU at  
zero frequency and at  infinite frequency. At infinite frequency, the temperature 
distribution along the wire will cease to vary with time. The error or step is then 

This step also applies for the normalized transfer function (eo /u' )N,  where e,  is the 
voltage fluctuation and u' is the velocity fluctuation. 

In an actual flow, as the velocity fluctuates A, n and El will all simultaneously 
fluctuate owing to the aeroelastic behaviour of the filament. Hence 

( 1 6 )  
aq d h  aq d n  aq d& 

d U  aAdU a n d U  ag ldU'  

Following through this analysis, it is simple to show that E has three contributions, i.e. 

_ -  dq 

E = wA€A+wnEn+yl€~l, 
where 

and 
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(C 1 
FIGURE 7. Definition of quantities and temperature distribution. (a)  Definition of quantities. 
(b ) ,  (c )  Typical computed temperature distributions; d = 5pm; Z/d = 100; = 10m/s, giving 
El = 72, E , / Z  = 2-95; d,/d = 6 ,  giving KO = 50; R = 1.5. ( b )  Different values of n ( A  = 0). ( c )  
Different values of A (n = 0.6). 

W,, W, and yl are weighting factors which must sum to unity. Their values are de- 
pendent on how A ,  n and c1 vary with U .  This information can come only from a 
detailed knowledge of the aeroelastic behaviour of the wire and how the distribution 
of 5 is affected by the wire orientation. Thus it can be seen that it is well-nighimpossible 
to make any precise predictions in a given situation. All that can be done is to give 
an idea of the potential errors by examining the values of eA, en and etl, which fortu- 
nately can be calculated. 

Equation (9) yields a set of solutions as follows: 

8, = $2 (Z,E1, A ,  n, KO, 2, a. 

q = i? (2, El, A, n, KO). 

(22) 

(23) 

By integrating (21) and (22) with respect to 2 and noting the normalizing conditions 
given by (lo), we obtain 
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This turns out to be a non-explicit expression for ?j which is solved by iteration once 
Z ,  El, A ,  n and KO are specified.? 

By numerical perturbations about a chosen operating point the derivatives 
(an/ah),, (aqlan), and (an/ag,), can be determined. 

Consider (1 1).  At infinite frequency &(x) must approach zero. Integrating (1 1) a.nd 
noting that 

7se~ax = 0, 

(24) one obtains q‘ = - z+1 -4 
From (21) and (22), B(x) is found. If it is known how c’(x) depends on the perturbations 
A’, n’ and Ei, (24) gives the’derivatives (aq/ah),, (aqlan), and (aq/aEl),. Hence ea, E, 
and can be found and these are mapped out in figure 8 for two values of KO (30 and 
100). From the Fourier conduction formula applied to the stub 

---.( l k  d s 2  ) .  
K o - l s k  2 

f A copy of the rather lengthy expressions for 8,, 8, and ?j can be obtained from the authors 
or from the Editor. 
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FIGURE 9. Theoretical Bode plots for perturbations in f l  for fixed h and n. n = 1 corresponds to 
symmet_rical solution. h = 0; d = 5 p m ;  l / d  = 200; 1,/1 = 2.5; d,/d = 5; D = 10m/s; R = 1.5, 
giving([) = 72; 7, = 0.036; 7 = 0.039. KO taken to be 50. 

This equation was used to give an idea of KO values but should be treated with caution. 
Stubs sometimes have tapers and the dissimilar metallic interfaces may upset the 
effective values of material properties. From the static-temperature data of Champagne 
et aH. (1969) one can deduce that K O  varied between 30 and 60 for their probes. It can 
be seen that the shapes of the contours are affected by KO but the magnitudes of the 
e’s are much the same. Also shown in figure 8 are the derivatives (aq/aA),, (aq/an), 
and (aq/aE,),. These are not significantly affected by the value of KO. The only missing 
data are the unknown derivatives (dA/dU),, ( d n / d U ) ,  and (d[,/dU),. 

must be chosen such that (5) follows the usual 
approximate King’s law as U is varied. This allows a variety of variations for A, n 
and El to simulate perturbations in the symmetry of wire cooling. It is difficult to 
know how to vary A, n and 5, but reasonable guesses can be made by observing how 
hot spots move about. See, for example, figures 7 ( b ,  c). The authors contend at  this 
stage that weighting factors of equal order ( -4)  in (17) are reasonable. Errors of 
e M 10 yo or higher are quite plausible. 

In  spite of the missing information, definite conclusions can be reached. If per- 
turbations in A alone occur, then eA is the appropriate step in response and similarly 
for perturbations in the quantities n and 5,. These conclusions follow directly from 
the well-accepted basic equation (8) and the rigorously derived end conditions. 
No approximations have been made other than the asymptotically exact linearizing 
approximations. For higher resistance ratios, the errors increased in some cases and 
decreased in others. 

To find the order of the frequency range of the step one must determine the full 
frequency-dependent solution of (11) .  This has been done for perturbations in El. 
Perturbations in other quantities have not been attempted. Figure 9 shows some typical 

Now perturbations in A, n and 
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frequency response curves. Calculated values of et1, from the full solution, were found 
to  agree with the earlier asymptotic calculations. It can be seen that, the more asym- 
metrical 5 is, the more the effects of the wire merge with the effects of the stub. 

4.3. Simple symmetrical solutions 
For the simple case of uniform 6 ,  all boundary conditions are symmetrical and a 
simple analytical solution can be obtained for the case of negligible wire time constant : 

(7,s)fcoth (7,s) - 1 - 
(7, s)f coth ( ~ , a ) *  ’ @ ) N  = l + s  

where E z l /RKo (27) 

for KO 2 20. 

For the case of a negligible stub effect and for sufficiently high frequencies the 
solution is 

where p = ( 1  + T, s)f, in which T, = 

response 
and = - a .  This gives a step in frequency 

E = - I/fiJR. (29) 

These symmetrical solutions are shown in figure 10 for different values of KO. Equation 
(28) was first arrived at by de Haan (1971). 

FiCuRE 10. Theoretical Bode plots for symmetrical wires for different values of KO. 
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5. Conclusions and discussion 
In  the case of temperature-fluctuation measurements, the theory and experiment 

agree reasonably well. Significant steps in frequency response occur with a centre- 
frequency of about 4Hz. The step is as large as 30% for an l ld  ratio of 100 and 
decreases for increasing l id .  The problem appears to be relatively straightforward 
and the step size can be calculated from a very simple formula. The step in response 
spans approximately a decade. 

In  the case of velocity-fluctuation measurements, the problem is intractable since 
it depends on quantities over which one has little control. A high resistance ratio 
causes the wire to bow owing to thermal expansion, and aeroelastic effects enter the 
problem; in general there appears to be a lack of symmetry in temperature distribu- 
tions. By perturbing the spatial mean film coefficient according to  the usual heat- 
transfer laws and in addition perturbing its symmetry, one finds that significant 
errors are possible. Furthermore, phenomena within the wire usually associated 
with high-frequency behaviour extend their influence down to low frequency. 

Differences in frequency response between wires have been observed to be as large 
as 10 "4 or higher (or 20 "4 in mean-square energy). 

The frequencies of a given step can range from about 10Hz to 1kHz or more. 
Unlike the temperafure-measuring case, where bulk heating of the prong occurs, 
lumped systems must be replaced by distributed systems. The lack of wire symmetry 
apparently causes heat waves to travel along the wire, thus reducing its effective time 
constant. From tests carried out this appreciable step in the response can occur with 
all wire geometries, resistance ratios and mean velocities. 

If precise measurements of turbulence are required, e.g. for establishing similarity 
laws based on absolute velocity scales such as the friction velocity in pipe or boundary- 
layer flows, it seems that wires should be calibrated dynamically a6 frequencies of the 
order of %he turbulence being measured. Perhaps a scheme using turbulence from a 
standard grid could be devi5ed.f Until such a scheme is developed, the only practical 
solution is to repeat the required measurements a number of times using different 
wires. 
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(d) 

FIGURE 6. Observation of hot spots. (a )  Straight wire uitlr no current, Z/d = 100. ( b )  With current 
flowing through uirc, 12 N 2.5. ( c )  Same wire with air flowing downunrds (lOrn/s). (d )  Sarno W I T P  

with liighcr air flow (20 m/s). Hot spot enliariced by multiple exposure. 
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